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Reliable predictions of nuclear properties are needed as much to answer fundamental science

questions as to use in applications such as reactor physics or data evaluation.

Nuclear density

functional theory (DFT) is currently the only microscopic, global approach to nuclear structure
that is applicable throughout the nuclear chart. In the past few years, considerable effort has been
devoted to establishing a general methodology to assess theoretical uncertainties in nuclear DFT
calculations. In this paper, we summarize some of the recent progress in this direction. Most of the
new material discussed here will be published in separate articles.

I. INTRODUCTION

The rapid development of leadership-class computing
facilities throughout the world, accompanied by targeted
programs from funding agencies to foster the use of high-
performance computing methods in science, has opened
new opportunities in theoretical nuclear structure [1]. Re-
searchers can now address important questions of nuclear
science using microscopic approaches rooted in the knowl-
edge of effective nuclear forces and standard methods of
quantum mechanics. Recent examples include the expla-
nation of the anomalously long half-life of the 4C iso-
tope used in carbon dating [2], predictions of neutrino-
nucleus currents relevant to physics beyond the standard
model [3], and light-ion fusion reactions relevant to the
National Ignition Facility [4].

In parallel, there has been an increasing need for ac-
curate and precise data, whether from measurements
or simulations, in areas as diverse as nuclear astro-
physics [5, 6], reactor physics [7], and data evaluation [8].
In the past, the cost of using standard methods of statis-
tics to estimate theoretical uncertainties in such micro-
scopic approaches was often prohibitive, but this limita-
tion has slowly been disappearing.

Among the few microscopic theories of nuclear struc-
ture, density functional theory (DFT) plays a special role,
since it is the only one to be applicable across the entire
nuclear chart, from the lightest to the heaviest elements.
Therefore, DFT is the tool of choice to study phenomena
such as nuclear fission [9] or superheavy element predic-
tions [10], but it has also seen applications in tests of
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fundamental symmetries [11, 12] and the search for neu-
trinoless double-beta decay [13].

Here, we present some of the challenges and method-
ologies used in nuclear DFT to estimate theoretical un-
certainties. This topic is covered in greater detail in an
invited contribution to a focus issue of the Journal of
Physics G: Nuclear and Particle Physics on “Enhancing
the Interaction between Nuclear Experiment and The-
ory through Information and Statistics ” [14]. In section
II, we discuss the main components of nuclear DFT. In
section III, we present some of the recent results in un-
certainty quantification and error propagation. In section
IV, we summarize our conclusions.

II. NUCLEAR DENSITY FUNCTIONAL
THEORY

Density functional theory is a general approach to the
quantum many-body system. It is based on a series of
theorems by Kohn and Sham, who have shown that the-
oretically one can find the exact ground-state energy of a
system of N interacting electrons by solving a system of
equations characteristic of an independent particle sys-
tem [15, 16]. This existence result was later extended to
the context of nuclear physics [17]. Nuclear DFT is a
reformulation of the traditional self-consistent mean-field
(SCMF) theory of nuclear structure, which has success-
fully predicted a broad range of nuclear properties.

The essential component of both the SCMF theory
and nuclear DFT is the energy density functional (EDF),
which encapsulates all information about the system (in
principle). The EDF is a functional of the density of neu-
trons and protons, as well as of the pairing density [18].
In nuclear DFT, the EDF is treated at the Hartree-Fock-
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Bogoliubov (HFB) approximation level [19]; in the SCMF
theory, the EDF is often related to an underlying two-
body Hamiltonian, and the HFB approximation may be
only the first step of a series of calculations [20]. In any
case, the EDF is characterized by a number of coupling
constants that are not given by any underlying theory and
must therefore be adjusted to some experimental data.

One must emphasize that the Kohn-Sham theorem is
only an existence theorem: there is no magic recipe to
determine the one EDF that will give the exact energy
of the nucleus. In addition, in-medium nuclear forces are
poorly known and should in principle be derived from
quantum chromodynamics. This situation is in contrast
to electronic DFT, where the Coulomb force is known ex-
actly. One should, therefore, consider nuclear DFT and
the SCMF theory as inherently imperfect models of the
nucleus: this is the first and major source of errors in
DFT, which we will refer to as “model errors.” Let us
denote by & = (z1,...,z,,) the parameters of the EDF
(the model). Typically, n, =~ 10 — 20. These param-
eters will be fitted on some n, data points yi,...,Yn,.
There could be different types of data: atomic masses,
r.m.s. charge radii, mass differences, excitation energies
of isomers, and so on. Clearly, given a specific EDF, the
choice of the experimental data will impact the overall
predictive power of DFT: this is the second source of er-
rors in DFT, which we will label “fitting errors.” A third
source of errors, “implementation errors,” is caused by
the need to solve the DFT equations numerically. These
various sources of uncertainties are discussed in more de-
tail in [14]. Here, we focus only on selected aspects of
fitting errors.

III. QUANTIFYING AND PROPAGATING
ERRORS IN NUCLEAR DFT

In discussing uncertainties pertaining to the determina-
tion of model parameters, we assume we have an energy
density functional that is characterized by the n,-vector
of unknown parameters . We want to determine the
best way to obtain an optimal set of parameters x and,
at the same time, to quantify the uncertainties associated
with this procedure.

Arguably, a very large amount of experimental data
exists that potentially could be used to fit the few param-
eters of an EDF. However, different data types may have
different impacts on specific model parameters. For ex-
ample, researchers using a singular value decomposition
analysis pointed out that only a few of the eight parame-
ters of a standard Skyrme EDF are relevant for reproduc-
ing nuclear masses [21] or single-particle energies [22]. To
constrain every coupling constant of the EDF, therefore,
one must introduce different types of data. In practice,
the EDF parameters thus are determined by minimizing

the composite x? function

t=1 j=1

() = ) i)'y
with np the number of different data types, n; the num-
ber of data points for type ¢, and nqg = >, ns the total
number of data points over all types. The calculated
value of data point number j of type ¢ is denoted by ;,
with d;; the corresponding experimental value. Because
of the different types of data, relative distances must be
properly normalized by the quantity o, which represents
an estimate of the composite of the modeling and im-
plementation error on data type t. This strategy was
followed in a series of paper by the UNEDF collabora-
tion [23-25].

Minimization of the y? function yields an “optimal”
parametrization of the EDF. One should bear in mind
that this notion of optimality depends on, among other
things, the choice of the types t of experimental data, the
number of data points for each type ¢, and the weight
o chosen for each type. In addition, the quality of the
optimization is contingent on both the algorithm used
and the starting point chosen. Bearing in mind these
caveats, one can estimate the covariance matrix by as-
suming normally distributed errors and local linearity of
the model response with respect to variations of model
parameters [26]. This approximation has often been used
to propagate model errors [27-30].
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FIG. 1. (Color online) Two- and one-dimensional margins of
the 12-d posterior distribution for the UNEDF1 model param-
eters x.

Recently, approaches to uncertainty quantification
based on Bayesian statistics have been investigated. In
the context of nuclear DFT, such approaches are ap-
pealing because they treat model parameters as intrin-
sically random variables, the true value of which cannot
be known with certainty. This perspective is particu-
larly adapted to nuclear structure theory, since the nu-
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clear many-problem is unsolvable exactly: only approxi-
mations are available (DFT is one of them), and, there-
fore, uncertainties are unavoidable and should be quan-
tified. We show in figure 1 one of the first examples of
a Bayesian posterior distribution corresponding to the
UNEDF1 x? function of [25]. The red dots correspond to
the UNEDF1 solution itself. Such posterior distributions
provide an alternative method for characterizing different
sources of uncertainty, and propagating errors in applica-
tions [14].

IV. CONCLUSIONS

In many important research areas and contemporary
applications of nuclear science, nuclear density functional
theory represents the only microscopic model of structure
and reactions available. Here, we have summarized some
of the challenges and recent results in identifying and
quantifying theoretical uncertainties inherent to nuclear
DFT. In particular, we have emphasized the widespread

use of covariance analysis and the first applications of
Bayesian statistics in DFT. With the development of in-
creasingly powerful supercomputers, such methods will
most likely gain in popularity and could be applied, for
example, to practical applications such as the quantifica-
tion of errors for fission product yields in neutron-induced
fission.
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